

EM_Tec AG45 Conductive Silver Paint

Version No: A-1.00 Safety data sheet according to REACH Regulation (EC) No 1907/2006, Directive 2020/878

Issue Date: 17/03/2023

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	EM-Tec AG45 Conductive Silver Paint
Synonyms	
Proper shipping name	PAINT or PAINT RELATED MATERIAL (contains silver)
Other means of identification	15-002147

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Electrically conductive coating and EMI/RFI shield			
Uses advised against	No specific uses advised against are identified.			

1.3. Details of the manufacturer or supplier of the safety data sheet

Registered company name	Micro to Nano		
Address	Tappersweg 91, 2031 ET Haarlem The Netherlands		
Telephone	+31 (0)85 2013155		
Fax	Not Available		
Website	https://www.microtonano.com/		
Email	sales@microtonano.com	info@microtonano.com	

1.4. Emergency telephone number

Association / Organisation	National Emergency Telephone	
Emergency telephon number	112	
Other emergency telephon number	112	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H336 - Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, H225 - Flammable Liquids Category 2, H319 - Serious Eye Damage/Eye Irritation Category 2, H410 - Hazardous to the Aquatic Environment Long-Term Hazard Category 1
Legend:	1. Classified by according to EU Regulation Nr.1272/2008-VI

2.2. Label elements

Hazard pictogram(s)

Signal word	Dange

Hazard statement(s)

H336	May cause drowsiness or dizziness.			
H225	Highly flammable liquid and vapour.			
H319	Causes serious eye irritation.			
H410	Very toxic to aquatic life with long lasting effects.			

Supplementary Phrases

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P271	Use only outdoors or in a well-ventilated area.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.					
P305+P351+P338	IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.					
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.					
P337+P313	If eye irritation persists: Get medical advice/attention.					
P391	Collect spillage.					
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].					
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.					

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Inhalation and/or skin contact may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the respiratory system*.

Repeated exposure potentially causes skin dryness and cracking*.

dimethyl carbonate	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
acetone	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
amyl methyl ketone	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
propylene glycol monomethyl ether acetate, alpha-isomer	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

J.2.MIXLUI 65					
1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to EU Regulation Nr. 1272/2008/CLP Plus Amendments	SCL / M-Factor	Nanoform Particle Characteristics
1.7440-22-4 2.231-131-3 3.Not Available 4.Not Available	33	silver	Not Applicable	Not Available	Not Available
1.616-38-6 2.210-478-4 3.607-013-00-6 4.Not Available	22	dimethyl carbonate	Flammable Liquids Category 2; H225 [2]	Not Available	Not Available
1.67-64-1 2.200-662-2 3.606-001-00-8 4.Not Available	19	acetone *	Flammable Liquids Category 2, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3; H225, H319, H336 [2]	Not Available	Not Available
1.110-43-0 2.203-767-1 3.606-024-00-3	16	amyl methyl ketone *	Flammable Liquids Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4; H226, H302, H332 [2]	Not Available	Not Available

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to EU Regulation Nr. 1272/2008/CLP Plus Amendments	SCL / M-Factor	Nanoform Particle Characteristics
4.Not Available					
1.108-65-6 2.203-603-9 3.607-195-00-7 4.Not Available	2	propylene glycol monomethyl ether acetate, alpha-isomer *	Flammable Liquids Category 3; H226 [2]	Not Available	Not Available
Legend: 1. Classified by Chemwatch; 2. Classification according to EU Regulation Nr.1272/2008-VI; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties					

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

for simple ketones:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- ▶ Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- ▶ Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- ▶ DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5mL/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Consider intubation at first sign of upper airway obstruction resulting from oedema.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- ► Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- ► Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

.....

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- ► Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

5.1. Extinguishing media

▶ DO NOT use halogenated fire extinguishing agents

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM.

- ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

- Reacts with acids producing flammable / explosive hydrogen (H2) gas
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

▶ Alert Fire Brigade and tell them location and nature of hazard.

- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).

Fire Fighting

- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- ▶ **Do not** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal.

▶ DO NOT use water or foam as generation of explosive hydrogen may result.

With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present.

Metal powders, while generally regarded as non-combustible:

May burn when metal is finely divided and energy input is high.

- May react explosively with water.
- May be ignited by friction, heat, sparks or flame.
- ► May **REIGNITE** after fire is extinguished.
- Will burn with intense heat.

Fire/Explosion Hazard

Note:

- Metal dust fires are slow moving but intense and difficult to extinguish.
- Containers may explode on heating.
- $\mbox{\ensuremath{\,^{\blacktriangleright}}}$ Dusts or fumes may form explosive mixtures with air.
- Gases generated in fire may be poisonous, corrosive or irritating.
- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- F Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
- Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

► Remove all ignition sources

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Wipe up.
- ► Collect residues in a flammable waste container.

Chemical Class: ketones

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	R, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	4	throw	skiploader	DGC, RT

Major Spills

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- ► Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- ▶ Water spray or fog may be used to disperse /absorb vapour.
- ▶ Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- ► Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- ► Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

7.1. Precautions for safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- Check for bulging containers
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ► DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- ► When handling, DO NOT eat, drink or smoke.

when handling, **bo Not** eat, drink of smoke

- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- DO NOT allow clothing wet with material to stay in contact with skin

Fire and explosion protection

See section 5

- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depression, basement or areas where vapours may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the implementation of strict procedures and precautions.

▶ Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical Other information continuity by bonding and grounding (earthing) all equipment to reduce the risk. The vapours in the head space of the storage vessel may lie in the flammable/explosive range and hence may be flammable.

- For containers, or container linings use mild steel, stainless steel. Examples of suitable materials are: high density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product.
- For container linings, use amine-adduct cured epoxy paint.
- For seals and gaskets use: graphite, PTFE, Viton A, Viton B.
- ▶ Unsuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for glove
- ▶ Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours

7.2. Conditions for safe storage, including any incompatibilities

- CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release
- Heavy gauge metal packages / Heavy gauge metal drums
- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- Suitable container For materials with a viscosity of at least 2680 cSt. (23 deg. C)
 - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
 - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
 - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Heptanones:

- react violently with strong oxidisers, aldehydes, nitric acid, perchloric acid
- ▶ form a variety of unstable peroxides following reaction with hydrogen peroxide
- ▶ are incompatible with aliphatic amines, aldehydes, strong bases
- Carbonates are incompatible with cerium compounds, germanium, lead diacetate, magnesium, mercurous chloride, silver nitrate
- ▶ WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- · Silver or silver salts readily form explosive silver fulminate in the presence of both nitric acid and ethanol. The resulting fulminate is much more sensitive and a more powerful detonator than mercuric fulminate.
- · Silver and its compounds and salts may also form explosive compounds in the presence of acetylene and nitromethane.
- · Silver is incompatible with oxalic or tartaric acids, since the silver salts decompose on heating. Silver oxalate explodes at 140 deg C, and silver tartrate loses carbon dioxide

Silver solutions used in photography can become explosive under a variety of conditions. Ammoniacal silver nitrate solutions, on storage, heating or evaporation eventually deposit silver nitride ('fulminating silver). Silver nitrate and ethanol may give silver fulminate, and in contact with azides or hydrazine, silver azide. These are all dangerously sensitive explosives and detonators. Addition of ammonia solution to silver containing solutions does not directly produce explosive precipitates, but these are formed at pH values above 12.9, produced by addition of alkali, or by dissolution of silver oxide in ammonia

- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.
- Ketones in this group: ▶ are reactive with many acids and bases liberating heat and flammable gases (e.g., H2).
- react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat.
- are incompatible with isocyanates, aldehydes, cyanides, peroxides, and anhydrides.
- react violently with aldehydes, HNO3 (nitric acid), HNO3 + H2O2 (mixture of nitric acid and hydrogen peroxide), and HClO4 (perchloric acid).
- may react with hydrogen peroxide to form unstable peroxides; many are heat- and shock-sensitive explosives

A significant property of most ketones is that the hydrogen atoms on the carbons next to the carbonyl group are relatively acidic when compared to hydrogen atoms in typical hydrocarbons. Under strongly basic conditions these hydrogen atoms may be abstracted to form an enolate anion.

Storage incompatibility

This property allows ketones, especially methyl ketones, to participate in condensation reactions with other ketones and aldehydes. This type of condensation reaction is favoured by high substrate concentrations and high pH (greater than 1 wt% NaOH).

- ► Segregate from alcohol, water.
- Avoid strong acids, bases
- Avoid reaction with oxidising agents, bases and strong reducing agents.

Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but:

- ▶ can react exothermically with oxidising acids to form noxious gases.
- ▶ catalyse polymerisation and other reactions, particularly when finely divided
- react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
- Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air.
- Safe handling is possible in relatively low concentrations of oxygen in an inert gas.
- Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended.
- The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric. Factors influencing the pyrophoricity of metals are particle size, presence of moisture, nature of the surface of the particle, heat of formation of the oxide, or nitride, mass, hydrogen content, stress, purity and presence of oxide, among others.
- Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products.
- ▶ Elemental metals may react with azo/diazo compounds to form explosive products.
- ▶ Some elemental metals form explosive products with halogenated hydrocarbons.

Hazard categories in accordance with Regulation (EC) No 1272/2008 Qualifying quantity (tonnes) of

P5a: Flammable Liquids, P5b: Flammable Liquids, P5c: Flammable Liquids, E1: Hazardous to the Aquatic Environment in Category Acute 1 or Chronic 1

Qualifying quantity (tonnes) of dangerous substances as referred to in Article 3(10) for the application of P5a Lower- / Upper-tier requirements: 10 / 50 P5b Lower- / Upper-tier requirements: 50 / 200 P5c Lower- / Upper-tier requirements: 5 000 / 50 000 E1 Lower- / Upper-tier requirements: 100 / 200

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
silver	Inhalation 0.1 mg/m³ (Systemic, Chronic) Inhalation 0.04 mg/m³ (Systemic, Chronic) * Oral 1.2 mg/kg bw/day (Systemic, Chronic) *	0.04 µg/L (Water (Fresh)) 0.86 µg/L (Water - Intermittent release) 438.13 mg/kg sediment dw (Sediment (Fresh Water)) 438.13 mg/kg sediment dw (Sediment (Marine)) 1.41 mg/kg soil dw (Soil) 0.025 mg/L (STP)
dimethyl carbonate	Dermal 5 mg/kg bw/day (Systemic, Chronic) Inhalation 34.9 mg/m³ (Systemic, Chronic) Dermal 2.5 mg/kg bw/day (Systemic, Chronic) * Inhalation 8.7 mg/m³ (Systemic, Chronic) * Oral 2.5 mg/kg bw/day (Systemic, Chronic) *	0.5 mg/L (Water (Fresh)) 0.05 mg/L (Water - Intermittent release) 1 mg/L (Water (Marine)) 188 mg/L (STP)
acetone	Dermal 186 mg/kg bw/day (Systemic, Chronic) Inhalation 1 210 mg/m³ (Systemic, Chronic) Inhalation 2 420 mg/m³ (Local, Acute) Dermal 62 mg/kg bw/day (Systemic, Chronic) * Inhalation 200 mg/m³ (Systemic, Chronic) * Oral 62 mg/kg bw/day (Systemic, Chronic) *	10.6 mg/L (Water (Fresh)) 1.06 mg/L (Water - Intermittent release) 21 mg/L (Water (Marine)) 30.4 mg/kg sediment dw (Sediment (Fresh Water)) 3.04 mg/kg sediment dw (Sediment (Marine)) 29.5 mg/kg soil dw (Soil) 100 mg/L (STP)
amyl methyl ketone	Dermal 54.27 mg/kg bw/day (Systemic, Chronic) Inhalation 394.25 mg/m³ (Systemic, Chronic) Inhalation 1 516 mg/m³ (Systemic, Acute) Dermal 23.32 mg/kg bw/day (Systemic, Chronic) * Inhalation 84.31 mg/m³ (Systemic, Chronic) * Oral 23.32 mg/kg bw/day (Systemic, Chronic) *	0.098 mg/L (Water (Fresh)) 0.01 mg/L (Water - Intermittent release) 0.982 mg/L (Water (Marine)) 1.89 mg/kg sediment dw (Sediment (Fresh Water)) 0.189 mg/kg sediment dw (Sediment (Marine)) 0.321 mg/kg soil dw (Soil) 12.5 mg/L (STP)
propylene glycol monomethyl ether acetate, alpha-isomer	Dermal 796 mg/kg bw/day (Systemic, Chronic) Inhalation 275 mg/m³ (Systemic, Chronic) Inhalation 550 mg/m³ (Local, Acute) Dermal 320 mg/kg bw/day (Systemic, Chronic) * Inhalation 33 mg/m³ (Systemic, Chronic) * Oral 36 mg/kg bw/day (Systemic, Chronic) * Inhalation 33 mg/m³ (Local, Chronic) *	0.635 mg/L (Water (Fresh)) 0.064 mg/L (Water - Intermittent release) 6.35 mg/L (Water (Marine)) 3.29 mg/kg sediment dw (Sediment (Fresh Water)) 0.329 mg/kg sediment dw (Sediment (Marine)) 0.29 mg/kg soil dw (Soil) 100 mg/L (STP)

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
EU Workplace Exposure Limits (IOELVs).	silver	Silver, metallic	0.1 mg/m3	Not Available	Not Available	Not Available

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
EU Workplace Exposure Limits (IOELVs).	acetone	Acetone	500 ppm / 1210 mg/m3	3620 mg/m3 / 1500 ppm	Not Available	Not Available
EU Workplace Exposure Limits (IOELVs).	amyl methyl ketone	Heptan-2-one	50 ppm / 237 mg/m3	475 mg/m3 / 100 ppm	Not Available	Sk
EU Workplace Exposure Limits (IOELVs).	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxypropyl acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Sk

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
silver	0.3 mg/m3	170 mg/m3	990 mg/m3
dimethyl carbonate	11 ppm	120 ppm	700 ppm
acetone	Not Available	Not Available	Not Available
amyl methyl ketone	150 ppm	670 ppm	4000* ppm
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
silver	10 mg/m3	Not Available
dimethyl carbonate	Not Available	Not Available
acetone	2,500 ppm	Not Available
amyl methyl ketone	800 ppm	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available

MATERIAL DATA

Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition)

Saturation vapour concentration: 237000 ppm @ 20 C

NOTE: Detector tubes measuring in excess of 40 ppm, are available.

Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit.

Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation.

A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system.

Odour Safety Factor(OSF)

OSF=38 (ACETONE)

The adopted TLV-TWA for silver dust and fumes is 0.1 mg/m3 and for the more toxic soluble silver compounds the adopted value is 0.01 mg/m3. Cases of argyria (a slate to blue-grey discolouration of epithelial tissues) have been recorded when workers were exposed to silver nitrate at concentrations of 0.1 mg/m3 (as silver). Exposure to very high concentrations of silver fume has caused diffuse pulmonary fibrosis. Percutaneous absorption of silver compounds is reported to have resulted in allergy. Based on a 25% retention upon inhalation and a 10 m3/day respiratory volume, exposure to 0.1 mg/m3 (TWA) would result in total deposition of no more than 1.5 gms in 25 years.

For amyl methyl ketone:

Odour Threshold Value: 0.18 ppm (detection)

The TLV-TWA is well below the highest level of vapour (1025 ppm) reported to be associated with adverse effects in animals including dermal irritation.

Odour Safety Factor (OSF)

OSF=1.4E2 (2-HEPTANONE)

8.2.1. Appropriate engineering

controls

8.2. Exposure controls

Metal dusts must be collected at the source of generation as they are potentially explosive.

- Avoid ignition sources.
- ▶ Good housekeeping practices must be maintained.
- ▶ Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.
- ▶ Do not use compressed air to remove settled materials from floors, beams or equipment
- ▶ Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
- Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations.
- ▶ Do not allow chips, fines or dusts to contact water, particularly in enclosed areas.
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium.
- Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible.
- Wet scrubbers are preferable to dry dust collectors.
- ▶ Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec.
- Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Individual protection measures, such as personal protective equipment

Eye and face protection

► Safety glasses with side shields

- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- $\boldsymbol{\cdot}$ frequency and duration of contact,
- · chemical resistance of glove material,
- $\boldsymbol{\cdot}$ glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
 Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- \cdot Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- \cdot Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Other protection

PVC Apron.

▶ PVC protective suit may be required if exposure severe.

▶ Eyewash unit.

Overalls.

Ensure there is ready access to a safety shower.

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computergenerated* selection:

EM-Tec AG45 Conductive Silver Paint

Material	СРІ
BUTYL	A
BUTYL/NEOPRENE	A
PE/EVAL/PE	A
PVDC/PE/PVDC	A
SARANEX-23 2-PLY	В
TEFLON	В
CPE	С
HYPALON	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NITRILE	С
NITRILE+PVC	С
PVA	С
PVC	С
SARANEX-23	С
VITON/NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties			
Appearance	Light sensitive. Light Gray		
Physical state	Liquid	Relative density (Water = 1)	1.3
Odour	Not Available	Partition coefficient n-octanol / water	Not Available

Odour threshold	Not Available	Auto-ignition temperature (°C)	330
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	12	Molecular weight (g/mol)	Not Available
Flash point (°C)	-17	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	12	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	2	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	659
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should be taken nevertheless to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapours, fumes and aerosols. Inhalation hazard is increased at higher temperatures.

Not normally a hazard due to non-volatile nature of product

Inhaled

Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

l........................

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Ingestion

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Skin Contact

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests.

Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Silver is one of the most physically and physiologically cumulative of the elements. Chronic exposure to silver salts may cause argyria, a permanent ashen-grey discolouration of the skin, conjunctiva and internal organs (due to the deposit of an insoluble albuminate of silver). The respiratory tract may also be a site of local argyria (following chronic inhalation exposures) with a mild chronic bronchitis being the only obvious symptom.

Chronic

Sub-chronic exposure to a substance containing silver results in elevated alkaline phosphatase levels along with pigmentation of the tissues and organs. These effects are commonly observed in studies on silver.

Organ and tissue pigmentation appears to be an intrinsic property of silver ions, constituting an early marker of silver toxicity. This effect is therefore taken into consideration for the derivation of toxicicological reference values.

The lowest NOAELs for the medium- and long-term toxicity of silver ions were based respectively on the 90-day study of rats conducted with silver sodium hydrogen and zirconium phosphate and on the 105-week combined chronic study on rats conducted with silver-zinc zeolite. These NOAELs were recalculated to take account of the silver content of the substance tested and the rate of release of the silver ions. In order to derive the toxicological reference values, an oral absorption of 5% and a safety factor of 100 (10 for intra-species variability) were used.

In the absence of any observed acute toxicity effect, it is not possible to define a toxicity reference value for short-term exposure. The conservative approach set out in the European assessment is to use the medium-term acceptable exposure limit (AEL) as the short-term AEL. This value is based on the no observed effect level in rats exposed for 90 days.

- \cdot Short/medium-term AEL = 0.3 mg/kg bw/d x 5% / 100 = 0.15 µg/kg bw/d (silver ion equivalent)
- · Long-term AEL = 0.09 mg/kg bw/d x 5% / 100 = 0.045 μ g/kg bw/d (silver ion equivalent)

In a 2015 opinion on the classification of silver-zinc zeolite, the ECHA Committee for Risk Assessment (RAC) concluded that there was a potential embryotoxic effect in rats at doses where the dams were not severely affected by the treatment. This was manifested primarily by a decrease in the viability of the foetuses/pups, observed to varying degrees in developmental toxicity studies conducted with silver chloride (post-implantation losses, mortality of all offspring, increased incidence of hydronephrosis and cryptorchidism) and silver acetate (slight increase in the percentage of litters with late foetal death) and in a two-generation study with silver-zinc zeolite (lower number of births (F19), higher stillbirth rate, lower live birth rate, reduced pup weight, lower thymus weight, increased incidence of hydronephrosis.

A two-generation study of rats conducted with a different active substance containing silver also observed a lower number of births (F1), along with a smaller live litter size on day 1 (F210), and a lower thymus weight.

Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are nose and throat irritants. Smaller particles however, may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences.

Metals are widely distributed in the environment and are not biodegradable. Biologically, many metals are essential to living systems and are involved in a variety of cellular, physiological, and structural functions. They often are cofactors of enzymes, and play a role in transcriptional control, muscle contraction, nerve transmission, blood clotting, and oxygen transport and delivery. Although all metals are potentially toxic at some level, some are highly toxic at relatively low levels. Moreover, in some cases the same metal can be essential at low levels and toxic at higher levels. Or it may be toxic via one route of entry but not another. Toxic effects of some metals are associated with disruption of functions of

essential metals. Metals may have a range of effects, including cancer, neurotoxicity, immunotoxicity, cardiotoxicity, reproductive toxicity, teratogenicity, and genotoxicity. Biological half lives of metals vary greatly, from hours to years. Furthermore, the half life of a given metal varies in different tissues. Lead has a half life of 14 days in soft tissues and 20 years in bone.

In considering how to evaluate the toxicity of metals of potential concern, a number of aspects of metal toxicity should be kept in mind: Different species vary in their responses to different metals; in some cases, humans are more sensitive than rodents. Thus, there is a need for broad-based testing of metals;

- The route of exposure may affect the dose and site where the metal concentrates, and thus the observed toxic effects;
- ▶ Metal-metal interactions can reduce or enhance toxicity; biotransformation can reduce or enhance toxicity;
- It is difficult to predict the toxicity of one metal based on the adverse effects of another; in trying to evaluate the toxicity of one particular metal compound, predictions based on similar compounds of the same metal may be valid.

EM_Tec AG45 Conductive	TOXICITY	IRRITATION
Silver Paint	Not Available	Not Available
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
silver	Inhalation(Rat) LC50: >5.16 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >2000 mg/kg ^[2]	
	TOXICITY	IRRITATION
dimental contrarate	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
dimethyl carbonate	Inhalation(Rat) LC50: >5.36 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >5000 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 20000 mg/kg ^[2]	Eye (human): 500 ppm - irritant
	Inhalation(Mouse) LC50; 44 mg/L4h ^[2]	Eye (rabbit): 20mg/24hr -moderate
acetone	Oral (Rat) LD50: 5800 mg/kg ^[2]	Eye (rabbit): 3.95 mg - SEVERE
acetone		Eye: adverse effect observed (irritating) ^[1]
		Skin (rabbit): 500 mg/24hr - mild
		Skin (rabbit):395mg (open) - mild
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]
amul mathul katana	Inhalation(Rat) LC50: >16.7 mg/l4h ^[1]	Skin (rabbit): 14 mg/24h Mild
amyl methyl ketone	Oral (Rat) LD50: 1670 mg/kg ^[2]	Skin (rabbit): Primary Irritant
		Skin: adverse effect observed (irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	TOXICITY	IRRITATION
opylene glycol monomethyl ether acetate, alpha-isomer	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: 3739 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]
Legend:	1 Value obtained from Europe ECHA Pegistered Substa	nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise

EM_Tec AG45 Conductive Silver Paint

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

ACETONE

The acute

The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia

were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice

Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater.

PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS

ACETONE & AMYL METHYL KETONE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 - Data either not available or does not fill the criteria for classification

🎺 – Data available to make classification

11.2 Information on other hazards

11.2.1. Endocrine disrupting properties

No evidence of endocrine disrupting properties were found in the current literature.

11.2.2. Other information

See Section 11.1

SECTION 12 Ecological information

12.1. Toxicity

F14 T 4045 0	Endpoint	Test Duration (hr)	Species		Value	Source
EM_Tec AG45 Conductive Silver Paint	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Val	ue	Sourc
EC10	EC10(ECx)	72h	Algae or other aquatic plants	0.0	00001mg/l	2
	EC50	96h	Algae or other aquatic plants	0.0	02mg/L	4
silver	EC50	72h	Algae or other aquatic plants	0.0	00016mg/l	2
	LC50	96h	Fish	0.0	012mg/l	2
EC50	EC50	48h	Crustacea	0.0	001-0.0013mg/l	4
	Endpoint	Test Duration (hr)	Species		Value	Sourc
dimethyl carbonate	NOEC(ECx)	504h	Crustacea		25mg/l	2
	EC50	72h	Algae or other aquatic plants		>57.29mg/l	2
	LC50	96h	Fish		>=100mg/l	2
	EC50	96h	Algae or other aquatic plants		166.6-211mg/l	2
	EC50	48h	Crustacea		>74.16mg/l	2
	Endpoint	Test Duration (hr)	Species	Valu	ıe	Source
	NOEC(ECx)	12h	Fish	0.00)1mg/L	4
	LC50	96h	Fish	374	4.6-5000.7mg/L	4
acetone	EC50	72h	Algae or other aquatic plants	560	0-10000mg/l	4
	EC50	96h	Algae or other aquatic plants	9.87	'3-27.684mg/l	4
	EC50	48h	Crustacea	609	8.4mg/L	5
	Endpoint	Test Duration (hr)	Species		Value	Sourc
amyl mothyl kotana	LC50	96h	Fish		126-137mg/l	4
amyl methyl ketone	EC50	72h	Algae or other aquatic plants		75.5mg/l	2

	EC50	48h	Crustacea	>90.1mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	42.68mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
LC50	LC50	96h	Fish	100mg/l	1
propylene glycol monomethyl	EC50	72h	Algae or other aquatic plants	>1000mg/l	2
ether acetate, alpha-isomer	EC50	48h	Crustacea	373mg/l	2
	NOEC(ECx)	336h	Fish	47.5mg/l	2
	EC50	96h	Algae or other aquatic plants	>1000mg/l	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water.

Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects.

For silver and its compounds:

Environmental fate:

Silver is a rare but naturally occurring metal, often found deposited as a mineral ore in association with other elements. Emissions from smelting operations, manufacture and disposal of certain photographic and electrical supplies, coal combustion, and cloud seeding are some of the anthropogenic sources of silver in the biosphere. The global biogeochemical movements of silver are characterized by releases to the atmosphere, water, and land by natural and anthropogenic sources, long-range transport of fine particles in the atmosphere, wet and dry deposition, and sorption to soils and sediments.

In general, accumulation of silver by terrestrial plants from soils is low, even if the soil is amended with silver-containing sewage sludge or the plants are grown on tailings from silver mines, where silver accumulates mainly in the root systems.

The ability to accumulate dissolved silver varies widely between species. Some reported bioconcentration factors for marine organisms (calculated as milligrams of silver per kilogram fresh weight organism divided by milligrams of silver per litre of medium) are 210 in diatoms, 240 in brown algae, 330 in mussels, 2300 in scallops, and 18 700 in oysters, whereas bioconcentration factors for freshwater organisms have been reported to range from negligible in bluegills (*Lepomis macrochirus*) to 60 in daphnids; these values represent uptake of bioavailable silver in laboratory experiments. Laboratory studies with the less toxic silver compounds, such as silver sulfide and silver chloride, reveal that accumulation of silver does not necessarily lead to adverse effects. At concentrations normally encountered in the environment, food-chain biomagnification of silver in aquatic systems is unlikely. Elevated silver concentrations in biota occur in the vicinities of sewage outfalls, electroplating plants, mine waste sites, and silver iodide-seeded areas. Maximum concentrations recorded in field collections, in milligrams total silver per kilogram dry weight (tissue), were 1.5 in marine mammals (liver) (except Alaskan beluga whales *Delphinapterus leucas*, which had concentrations 2 orders of magnitude higher than those of other marine mammals), 6 in fish (bone), 14 in plants (whole), 30 in annelid worms (whole), 44 in birds (liver), 110 in mushrooms (whole), 185 in bivalve molluscs (soft parts), and 320 in gastropods (whole).

Ecotoxicity:

In general, silver ion was less toxic to freshwater aquatic organisms under conditions of low dissolved silver ion concentration and increasing water pH, hardness, sulfides, and dissolved and particulate organic loadings; under static test conditions, compared with flow-through regimens; and when animals were adequately nourished instead of being starved. Silver ions are very toxic to microorganisms. However, there is generally no strong inhibitory effect on microbial activity in sewage treatment plants because of reduced bioavailability due to rapid complexation and adsorption. Free silver ion was lethal to representative species of sensitive aquatic plants, invertebrates, and teleosts at nominal water concentrations of 1-5 ug/litre. Adverse effects occur on development of trout at concentrations as low as 0.17 ug/litre and on phytoplankton species composition and succession at 0.3-0.6 ug/litre.

A knowledge of the speciation of silver and its consequent bioavailability is crucial to understanding the potential risk of the metal. Measurement of free ionic silver is the only direct method that can be used to assess the likely effects of the metal on organisms. Speciation models can be used to assess the likely proportion of the total silver measured that is bioavailable to organisms. Unlike some other metals, background freshwater concentrations in pristine and most urban areas are well below concentrations causing toxic effects. Levels in most industrialized areas border on the effect concentration, assuming that conditions favour bioavailability. On the basis of available toxicity test results, it is unlikely that bioavailable free silver ions would ever be at sufficiently high concentrations to cause toxicity in marine environments.

No data were found on effects of silver on wild birds or mammals. Silver was harmful to poultry (tested as silver nitrate) at concentrations as low as 100 mg total silver/litre in drinking-water or 200 mg total silver/kg in diets. Sensitive laboratory mammals were adversely affected at total silver concentrations (added as silver nitrate) as low as 250 ug/litre in drinking-water (brain histopathology), 6 mg/kg in diet (high accumulations in kidneys and liver), or 13.9 mg/kg body weight (lethality).

Silver and Silver Compounds; Concise International Chemical Assessment Document (CICAD) 44 IPCS InChem (WHO)

The transport of silver through estuarine and coastal marine systems is dependent on biological uptake and incorporation. Uptake by phytoplankton is rapid, in proportion to silver concentration and inversely proportional to salinity. In contrast to studies performed with other toxic metals, sliver availability appears to be controlled by both the free silver ion concentration and the concentration of other silver complexes. Silver incorporated by phytoplankton is not lost as salinity increase; as a result silver associated with cellular material is largely retained within the estuary. Phytoplankton exhibit a variable sensitivity to silver. Sensitive species exhibit a marked delay in the onset of growth in response to silver at low concentrations, even though maximum growth rates are similar to controls. A delay in the onset of growth reduces the ability of a population to respond to short-term favourable conditions and to succeed within th community.

James G. Saunders and George R Abbe: Aquatic Toxicology and Environmental Fate; ASTM STP 1007, 1989, pp 5-18

For Ketones: Ketones, unless they are alpha, beta--unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions. When pH levels are greater than 10, condensation reactions can occur which produce higher molecular weight products. Under ambient conditions of temperature, pH, and low concentration, these condensation reactions are unfavourable. Based on its reactions in air, it seems likely that ketones undergo photolysis in water.

Terrestrial Fate: It is probable that ketones will be biodegraded by micro-organisms in soil and water.

Ecotoxicity: Ketones are unlikely to bioconcentrate or biomagnify.

Lectoracity. Records are uninkery to for acetone:
log Kow: -0.24
Half-life (hr) air: 312-1896
Half-life (hr) H2O surface water: 20
Henry's atm m3 /mol: 3.67E-05
BOD 5: 0.31-1.76,46-55%
COD: 1.12-2.07
ThOD: 2.2

BCF: 0.69

Environmental fate:

Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water

In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source.

Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life.

Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades

Acetone does not concentrate in the food chain.

Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period

Drinking Water Standard: none available

Soil Guidelines: none available.

Air Quality Standards: none available.

Ecotoxicity:

Testing shows that acetone exhibits a low order of toxicity

Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l

Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l

Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l

Aquatic invertebrate 2100 - 16700 mg/l Aquatic plant NOEC: 5400-7500 mg/l Daphnia magna chronic NOEC 1660 mg/l

Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality.

The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L.

DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
dimethyl carbonate	HIGH	HIGH
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
amyl methyl ketone	LOW	LOW
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
dimethyl carbonate	LOW (LogKOW = 0.2336)
acetone	LOW (BCF = 0.69)
amyl methyl ketone	LOW (LogKOW = 1.98)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)

12.4. Mobility in soil

Ingredient	Mobility
dimethyl carbonate	LOW (KOC = 8.254)
acetone	HIGH (KOC = 1.981)
amyl methyl ketone	LOW (KOC = 24.01)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)

12.5. Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Available	Not Available	Not Available
PBT	×	×	×
vPvB	X	×	×
PBT Criteria fulfilled?			
vPvB			No

12.6. Endocrine disrupting properties

No evidence of endocrine disrupting properties were found in the current literature.

12.7. Other adverse effects

No evidence of ozone depleting properties were found in the current literature.

SECTION 13 Disposal considerations

13.1. Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ► Reuse
- ► Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste treatment options

Not Available

Sewage disposal options Not Available

SECTION 14 Transport information

Labels Required

Limited Quantity: 15-002147

Land transport (ADR-RID)

14.1. UN number or ID number	1263		
14.2. UN proper shipping name	PAINT or PAINT RELATED MATERIAL (contains silver)		
14.3. Transport hazard	Class	3	
class(es)	Subsidiary risk Not Applicab		ele
14.4. Packing group	II		
14.5. Environmental hazard	Environmentally hazardous		
	Hazard identification (Kemler)		33
	Classification code		F1
14.6. Special precautions for	Hazard Label		3
user	Special provision	ns	163 367 640C 650 640D
	Limited quantity		5 L
	Tunnel Restriction Code		2 (D/E)

Air transport (ICAO-IATA / DGR)

14.1. UN number	1263	
14.2. UN proper shipping name	Paint related material (including paint thinning or reducing compounds) (contains silver)	
14.3. Transport hazard class(es)	ICAO/IATA Class	3
	ICAO / IATA Subrisk	Not Applicable
	ERG Code	3L

14.4. Packing group	П		
14.5. Environmental hazard	Environmentally hazardous		
	Special provisions	A3 A72 A192	
	Cargo Only Packing Instructions	364	
	Cargo Only Maximum Qty / Pack	60 L	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions	353	
	Passenger and Cargo Maximum Qty / Pack	5 L	
	Passenger and Cargo Limited Quantity Packing Instructions	Y341	
	Passenger and Cargo Limited Maximum Qty / Pack	1 L	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1263		
14.2. UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound) (contains silver)		
14.3. Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
14.4. Packing group			
14.5. Environmental hazard	Marine Pollutant		
14.6. Special precautions for user	EMS Number F-E, S-E Special provisions 163 367 Limited Quantities 5 L		

Inland waterways transport (ADN)

14.1. UN number	1263		
14.2. UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning and reducing compound) (contains silver)		
14.3. Transport hazard class(es)	3 Not Applicable		
14.4. Packing group	II.		
14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Classification code	F1	
	Special provisions	163; 367; 640C; 640D; 650	
	Limited quantity	5 L	
	Equipment required	PP, EX, A	
	Fire cones number	1	

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
silver	Not Available
dimethyl carbonate	Not Available
acetone	Not Available
amyl methyl ketone	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

•	
Product name	Ship Type
silver	Not Available
dimethyl carbonate	Not Available
acetone	Not Available
amyl methyl ketone	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

silver is found on the following regulatory lists

Great Britain GB Biocidal Active Substances

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for

Manufactured Nanomaterials (MNMS)

UK REACH grandfathered registrations notified substances list

UK Workplace Exposure Limits (WELs).

dimethyl carbonate is found on the following regulatory lists

Great Britain GB mandatory classification and labelling list (GB MCL)

UK REACH grandfathered registrations notified substances list

acetone is found on the following regulatory lists

Great Britain GB mandatory classification and labelling list (GB MCL)

UK REACH grandfathered registrations notified substances list

UK Workplace Exposure Limits (WELs).

amyl methyl ketone is found on the following regulatory lists

Great Britain GB mandatory classification and labelling list (GB MCL)

UK Workplace Exposure Limits (WELs).

UK REACH grandfathered registrations notified substances list

propylene glycol monomethyl ether acetate, alpha-isomer is found on the following regulatory lists

Great Britain GB mandatory classification and labelling list (GB MCL)

UK Workplace Exposure Limits (WELs).

UK REACH grandfathered registrations notified substances list

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

Information according to 2012/18/EU (Seveso III):

Seveso Category

P5a, P5b, P5c, E1

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (silver; dimethyl carbonate; acetone; amyl methyl ketone; propylene glycol monomethyl ether acetate, alpha-isomer)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (silver)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	17/03/2023
Initial Date	17/03/2023

Full text Risk and Hazard codes

Tall tox files and fideard bodos		
H226	H226 Flammable liquid and vapour.	
H302	02 Harmful if swallowed.	
H332	Harmful if inhaled.	

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Classification Procedure
Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, H336	Expert judgement
Flammable Liquids Category 2, H225	Expert judgement
Serious Eye Damage/Eye Irritation Category 2, H319	Calculation method
Hazardous to the Aquatic Environment Long-Term Hazard Category 1, H410	Expert judgement